1.200.000 VISUALIZAÇÕES! OBRIGADO!!

sábado, 12 de dezembro de 2009

Determinates II

Cofator

Chamamos de cofator ou complemento algébrico relativo a um elemento aij de uma matriz quadrada de ordem n o número Aij tal que Aij = (-1)i+j . MCij .

Veja:

a) Dada , os cofatores relativos aos elementos a11 e a12 da matriz M são:

b) Sendo , vamos calcular os cofatores A22, A23 e A31:

Teorema de Laplace

O determinante de uma matriz quadrada M = [aij]mxn pode ser obtido pela soma dos produtos dos elementos de uma fila qualquer ( linha ou coluna) da matriz M pelos respectivos cofatores.

Assim, fixando , temos:

em que é o somatório de todos os termos de índice i, variando de 1 até m, .

Nenhum comentário: