1.200.000 VISUALIZAÇÕES! OBRIGADO!!

sábado, 9 de maio de 2009

Equação do Primeiro Grau

Equação do Primeiro Grau

1. Introdução

Consideremos as três igualdades abaixo:

1ª) 2 + 3 = 5
2ª) 2 + 1 = 5
3ª) 2 + x = 5

Dizemos que as duas primeiras igualdades são sentenças matemáticas fechadas, pois são definitivamente falsas ou definitivamente verdadeiras. No caso, a primeira é sempre verdadeira e a segunda é sempre falsa.

Dizemos que a terceira igualdade é uma sentença matemática aberta, pois pode ser verdadeira ou falsa, dependendo do valor atribuído à letra x. No caso, é verdadeira quando atribuímos a x o valor 3 e falsa quando o valor atribuído a x é diferente de 3. Sentenças matemáticas desse tipo são chamadas de equações; a letra x é a variável da equação, o número 3 é a raiz ou solução da equação e o conjunto S = {3} é o conjunto solução da equação, também chamado de conjunto verdade.

Exemplos:
1º) 2x + 1 = 7
3 é a única raiz, então S = {3}

2º) 3x – 5 = –2
1 é a única raiz, então S = {1}

2. Resolução de uma Equação

Resolver uma equação é determinar todas as raízes da equação que pertencem a um conjunto previamente estabelecido, chamado conjunto universo.

1º) Resolver a equação:

x2 = 4 em R

As raízes reais da equação são –2 e +2, assim:

2º) Resolver a equação:

x2 = 4 em N

A única raiz natural da equação é 2, assim:

Na resolução das equações, podemos nos valer de algumas operações e transformá-las em equações equivalentes, isto é, que apresentam o mesmo conjunto solução, no mesmo universo.
Vejamos algumas destas propriedades:
P1) Quando adicionamos ou subtraímos um mesmo número aos dois membros de uma igualdade, esta permanece verdadeira.

Consequência:


Observemos a equação:

x + 2 = 3

Subtraindo 2 nos dois membros da igualdade, temos:

x + 2 = 3 x + 2 -2 = 3 - 2

Assim:

x + 2 = 3 x = 1

P2) Quando multiplicamos ou dividimos os dois membros de uma igualdade por um número diferente de zero, a igualdade permanece verdadeira.

Consequência:

Observemos a equação:

–2x = 6

Dividindo por –2 os dois membros da igualdade, temos:

Assim:

-2x = 6 x = -3

3. Equação do 1º Grau

Chamamos de equação do 1º grau as equações do tipo:

onde a e b são números conhecidos com a 0.

Exemplo:

3x – 5 = 0 (a = 3 e b = –5)

Para resolvermos uma equação do 1º grau, devemos isolar a incógnita em um dos membros da igualdade, usando as propriedades P1 e P2 do item anterior.

Exemplo:

3x – 5 = 0

3x - 5 3x - 5 + 5 = 0 + 5

3x - 5 = 0 3x = 5

3x = 5

3x = 5

Assim: 3x - 5 = 0

De modo abreviado, fazemos:

3x - 5 = 0 3x = 5

Assim:

Podemos estabelecer uma fórmula para resolver em R a equação:

Assim:

ax + b = 0 ax = -b

Exemplo:

Resolver em R a equação:

2x + 5 = 0

4. Problemas do 1º Grau

Problema é uma proposição a resolver, na qual figuram elementos conhecidos ou supostamente conhecidos, chamados dados, e elementos desconhecidos, chamados incógnitas.
Resolver um problema é determinar os valores das incógnitas que satisfazem às condições impostas pelo enunciado.
A resolução de um problema possui três fases:

1) Colocar o problema em equação;
2) Resolver a equação ou equações do problema;
3) Interpretar os resultados ou fazer uma discussão sobre eles.

Exercícios Resolvidos

Resolver as equações:

01. 3x – 5 = 2x + 6
Resolução

3x – 2x = 6 + 5
x = 11
S = {11}

02. 2 (x + 3) + 3 (x – 1) = 7 (x + 2)

Resolução

2x + 6 + 3x – 3 = 7x + 14
2x + 3x – 7x = 14 + 3 – 6
–2x = 11


Cálculo do número de diagonais de um polígono

Revisão de Trigonometria

Denominamos polígono uma figura formada por segmentos de reta que delimitam uma região. Os polígonos precisam ser figuras fechadas. Observe:

Os polígonos possuem os seguintes elementos: vértices, lados, ângulos internos, ângulos externos e diagonais. Dos elementos citados vamos estudar o significado de diagonais e como calcular o número de diagonais de um polígono qualquer.

Denominamos por diagonal o segmento de reta que une um vértice ao outro. O número de diagonais de um polígono é proporcional ao número de lados.

Note que na figura A temos quatro vértices, então traçamos quatro diagonais, cada uma partindo de um vértice. Mas observe que a diagonal PR é a mesma RP, e a diagonal SQ é a mesma QS, então sempre dividiremos o número de diagonais por 2. Para cálculos envolvendo o número de diagonais, utilizamos a seguinte fórmula:

A fórmula n indica o número de lados e n – 3 determina o número de diagonais que partem de um único vértice e a divisão por dois elimina a duplicidade de diagonais ocorridas em um polígono.


Exemplo

Determine o número de diagonais de um polígono com:

a) 8 lados (octógono)

O octógono possui 20 diagonais.

b) 12 lados (dodecágono)

O dodecágono possui 54 diagonais.

c) 20 lados (icoságono)

O número de diagonais de um icoságono é igual a 170.

d) 3 lados (triângulo)

O triângulo é o único polígono que não possui diagonais.